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ABSTRACT

The Monterey Security Architecture (MYSEA) provides trusted security services, allowing
users to access information at different sensitivity levels at the same time. The MYSEA server
enforces a mandatory access control policy to ensure that users can only access data for which
they are authorized. We would like to know the consequences of the MYSEA design on the per-
formance of the MYSEA system. In particular, have the MYSEA trusted processes introduced
any design bottlenecks into the system?

The objective of this thesis is to analyze the performance of selected aspects of MYSEA
and, when applicable, identify system performance bottlenecks. In the absence of bottlenecks,
our secure system performance study can be interpreted as characterizing the “cost of security”
in a multilevel security context. We analyze the overhead associated with MYSEA by targeting
and benchmarking its components and services. We deployed the netperf tool as a MYSEA
service, to observe costs associated with IPSec, the MYSEA trusted proxy and communication
among servers in the MYSEA Federation. Our benchmark tests provided useful insights to the
performance overhead introduced by MYSEA’s design and highlighted the cost of security of
selected aspects in MYSEA.
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CHAPTER 1:
Introduction

Demand exists for the mandatory enforcement of confidentiality and integrity policies, espe-
cially in the military and business domains. The need to share information across different
sensitivity domains necessitates the development of multilevel distributed security architectures
that enforce information flow policies, while maintaining usability and efficiency. Military and
commercial systems are currently unable to provide high assurance support for multilevel secu-
rity policy enforcement [1]. With adversaries and hackers performing increasingly sophisticated
attacks, the lack of robust security measures are a cause for concern due to the risk of leakage
of sensitive information, corruption of critical data and denial of service. New trusted com-
puting approaches involving interoperable system security features and standardized security
mechanisms are required to secure mission-critical systems.

MYSEA provides simultaneous access to different security classifications of information using
standardized commercial-off-the-shelf components. Mandatory enforcement of confidentiality
and integrity policies necessitates the design of distributed architectures to control information
flow between systems while providing for security controls to protect against malicious code
and attacks from adversaries.

1.1 Motivation
The confidentiality, integrity and availability (CIA) of data, applications and networks are vital
to any organization. Mandatory access controls, where data is segregated into security classifi-
cations and is only accessible to suitably authorized personnel are a way of addressing security
concerns associated with malicious software. The need to protect sensitive data and allow se-
lective sharing of information between users necessitates the development of high assurance
trusted systems. For users to embrace the security controls imposed, systems need to be ef-
ficient and user-friendly. Therefore, there is a need to investigate the system performance of
MYSEA, to identify and analyze the potential bottlenecks.

1.2 Purpose of Study
Various trusted security components are part of MYSEA. These amend the underlying platform
to provide authorized users with simultaneous access to information of different classification
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levels, introducing necessary overhead to the system. There is a need to investigate the “cost of
security” and study the performance overhead associated with high assurance systems following
this design, compared with systems operating traditional servers. This is especially crucial for
multi-user distributed systems where scaling and user-friendliness become important factors in
user-acceptance and ergonomic security, both of which are stated MYSEA goals.

To create a trusted security environment, the MYSEA design introduces some (perhaps sig-
nificant) overhead that may impact performance. Every TCP connection (for User Datagram
Protocol (UDP), every packet) from the multilevel Local Area Network (LAN) is processed,
verified and cross-referenced against access control permissions by a trusted subject. This in-
spection takes place in different processes in the server architecture. Key Performance Indica-
tor (KPI)s associated with the system need to be measured and their impacts assessed. The “cost
of security” in terms of efficiency, performance and responsiveness is an important factor in the
application and risk analysis of security controls. Thus, measurement of the KPIs is needed
before an informed tradeoff between the performance penalties associated with implementing
MYSEA and the security requirements and policies mandated.

The goal of our study is to analyze the performance of selected aspects of MYSEA and, when
applicable, identify system performance bottlenecks. System usability is determined by many
factors, one of which is system latency measured by the end-to-end time taken for a system
to react to a user’s command. Another important factor is to gauge the throughput of the sys-
tem, measuring the bytes per second processed by the system. Benchmarking the distributed
MYSEA system will help to reveal potential design inefficiencies so that, in the long run, steps
can be taken to improve its performance and efficiency. A bottleneck occurs when the perfor-
mance of a system is limited by a number of components or resources, thus reducing the overall
throughput or increasing the latency experienced by a user. In the absence of bottlenecks, our
secure system performance study can be interpreted as characterizing the “cost of security” in
a multilevel security context.

1.3 Thesis Organization
The remainder of this thesis is organized as follows: Chapter 2 provides the background on
MYSEA and an overview of its trusted components and services, which in combination form
the multilevel secure distributed system. It also provides a detailed discussion of the design of
MYSEA and the design considerations that impact its performance. Chapter 3 outlines the ob-
jectives of the thesis by identifying the high-level and detailed requirements for benchmarking
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MYSEA, including the criteria for selection of a benchmark tool. These requirements provide
the basis for the selection of the KPIs that were measured. This chapter also analyses the various
benchmark tools for consideration; compares the pros and cons of each tool and selects a tool
to benchmark MYSEA. It describes the benchmark methodology used to ensure that tests were
conducted fairly, accurately and without bias. Chapter 4 describes the test environment, its test
configurations and the test plan used for the execution of the benchmarks. Chapter 5 deals with
the actual implementation of the benchmarks and analyzes the results collected by the various
benchmark tests. Chapter 6 concludes by summarizing the results, discussing related work and
providing recommendations for future work.
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CHAPTER 2:
Monterey Security Architecture Overview

MYSEA, The Monterey Security Architecture, is a distributed client-server architecture com-
posed of existing Government-off-the-shelf (GOTS) and Commercial-off-the-shelf (COTS) soft-
ware, open-source components, and (relatively few) special-purpose, high-assurance compo-
nents [1] [2] [3] [4]. MYSEA provides a trusted computing operating environment for enforcing
information-flow policies in a multilevel LAN. MYSEA allows vertical integration of applica-
tion security requirements with underlying security services; an existing Quality of Security
Service model [5] and framework are applied to the integrated security structure. In addition,
MYSEA supports a secure and unforgeable bidirectional connection, called a trusted path, be-
tween the user and the trusted elements of the systems of the system, as well as trusted channels
between devices.

MYSEA enforces confidentiality and integrity policies formalized in the Bell and La-Padula
(BLP) and Biba security policy models respectively. The high assurance MYSEA Servers en-
force the security policies and control the information that a user can access at a particular sensi-
tivity level. These servers host various open-source or commercial application servers (i.e., web
server and mail server), providing services along with multilevel views of information to clients.
MYSEA currently supports Simple Mail Transfer Protocol (SMTP) [6], Internet Message Ac-
cess Protocol (IMAP) [7], Voice over Internet Protocol (VoIP) [8], Web Distributed Authoring
and Versioning (WebDAV) [9], Hypertext Transfer Protocol (HTTP) [10] and Wiki [11].

MYSEA clients are commodity PCs equipped with specialized Trusted Path Extension (TPE)
devices. TPEs are inserted between unsecured client workstations and the MYSEA server.
Every network connection from a MYSEA client to the Multilevel Security (MLS) servers is
labeled, thus permitting the enforcement of the security policies for data entering MYSEA
Server. Together, the MYSEA Servers and TPEs form the Trusted Computing Base (TCB).

Section 2.1 provides the MYSEA design overview and Section 2.2 describes a typical usage
scenario of how clients gain access to the services hosted on MYSEA server; Section 2.3 pro-
vides a detailed description of the important components and services in MYSEA and possible
sources of performance overhead. Section 2.4 outlines the security policy enforced in MYSEA
and related design decisions. Section 2.5 describes the current MYSEA prototype.
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2.1 MYSEA Design Overview
MYSEA is designed to provide application services in a high assurance, distributed environ-
ment, while protecting users from malicious code and other attacks. The design of MYSEA
allows mandatory policy enforcement mechanisms to be allocated to a few specialized high-
assurance trusted components, while encompassing other low assurance commercial compo-
nents and applications to support operational functionality.

The key design principles of MYSEA are (1) security dependencies must be partially ordered;
(2) the ordering of trust and trustworthiness must be present and (3) the principle of least priv-
ilege must be enforced. A federation of highly trustworthy MLS servers provides the locus of
policy enforcement, mediating all accesses to resources in the system. The MYSEA servers
host various open-source or commercial services such as mail and web services. The MYSEA
federation is designed to be a robust and scalable foundation supporting expansion: the scala-
bility requirement for MYSEA is to support up to 100 clients with concurrent user sessions at
100 different security levels.

To establish a secure communication channel between clients and MYSEA servers, trusted
TPEs authenticate and disambiguate clients. All network traffic flows in and out of MYSEA
are tracked to determine the security level of the client making the request. This results in an
implicit labeling of all network traffic.

MYSEA servers and TPEs collectively enforce the mandatory security policies, forming a
Trusted Computing Base (TCB). The MYSEA TCB is designed to facilitate evaluation by
TCB subsets [12]. TCB subsets allow for the partition of a complex system into smaller dis-
joint trusted subsets, each of which resides in its own protection domain and enforces a security
policy subset upon the subjects and objects under its control [12]. The composition of each
TCB subset is small and less complex, and can be evaluated individually for policy enforce-
ment correctness. This chain of incremental evaluations of TCB subsets combined with domain
mechanism, which in the case of MYSEA is both logical and physical, ensures that the policies
are enforced.

2.2 MYSEA Concept of Operations
Users logon to the MYSEA server using a Single Level At a Time (SLAT) client workstation.
The commodity workstations can be on the local multilevel LAN as well as on legacy single
level networks. Clients on the multilevel LAN must have an associated TPE. Labels for clients
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on legacy networks are implicit, as all clients are at the level of the network itself. Each LAN-
based client workstation and TPE is logically and physically bound together. There is exactly
one TPE for each client workstation, and no more than one user at a time can be active on the
given TPE. The TPE distinguishes user sessions and establishes a trusted path of communica-
tion to the MYSEA server. Upon logon, the TPE establishes an identity for audit and access
control purposes; and forwards the user’s credentials to MYSEA server.

Next, the user uses the TPE to negotiate a session level within his security clearance range.
Based on the security policy enforced by the MYSEA server, the session level determines the
domain and resources he can access during that session. For example, to access resources at a
higher classification level, the user would need to change his session level using the TPE.

Following session level negotiation, the SLAT client-TPE pair can be used to access applications
hosted on any MYSEA server or on a single-level network at the user’s session level. When
activity at a particular session level is over, data created or modified on the client is stored on
the MYSEA server, and the SLAT client state is automatically purged at the end of each session.

Figure 2.1: Major Components in MYSEA From [1]
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2.3 Overview of MYSEA Components and Services
This section describes the major MYSEA components and services that comprise MYSEA’s
design. Figure 2.1 shows the relationship between some major components and services in
MYSEA. The major components in MYSEA include:

1. Clients and TPEs. Each SLAT client executes popular software applications and pro-
ductivity tools such as word processors and web browsers. The TPEs controls the in-
terface between the client and the MYSEA server. The TPE provides transport-layer
security, trustworthy identification and authentication, and session establishment.

2. MYSEA Trusted Proxy Service. Various untrusted, open source applications hosted
on the MYSEA server provide services (e.g. web services and mail services) to clients.
The clients cannot directly access these applications. Instead, clients invoke the services
through a layer of proxy processes provided by MYSEA.

3. MYSEA server Federation. The MYSEA architecture is distributed, leveraging a
cluster of high-assurance MYSEA servers. These servers provide the locus of multilevel
security policy enforcement and host various open source or commercial application pro-
tocol servers.

4. Dynamic Security Services. The Dynamic Security Services (DSS) manages the
transport-layer security used to protect the trusted path between the TPE and remote
MYSEA server.

5. Single-Level Networks. Existing classified single level networks are connected to the
MYSEA server providing application services to both local clients and clients on legacy
networks.

2.3.1 Clients and TPES.
MYSEA clients are SLAT, and can only access and process data, at a single session level at one
time. MYSEA clients consist of two components: commodity PCs and TPEs. Commodity PCs
are untrusted, “thin-client” machines, running familiar commercial software and OSes. They
are loaded with COTS products and open-source software that assist the user to perform tasks
like word-processing, web browsing and communication. With this software, users can access
remote applications hosted on a MYSEA server or single-level network.

The TPEs operate largely under the direction of the remote MYSEA server and help to enforce
MLS LAN policies. All network traffic in and out of a SLAT Client is routed through its TPE.
The TPE ensures that a secure tunnel is established between client and TCB. This tunnel is
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encrypted with Internet Protocol Security (IPSec) leveraging DSS services (see Section 2.3.4).

When a remote session is established, the TPE sends a request for a service via the secure tunnel
to the MYSEA server. The TPE acts as a Network Address Translation (NAT) device, perform-
ing address translation on all traffic traversing between the client and the MYSEA server. On
session establishment, the TPE passes the user’s credentials to the MYSEA server, which val-
idates the credentials and instructs the TPE whether to allow or deny access. The user may
use the TPE to send commands to the MYSEA server to perform session-related tasks such as
ending the session or changing session level.

2.3.2 MYSEA Trusted Proxy Service
Each MYSEA server consists of a high assurance operating system that enforces the mandatory
security policy. The high assurance kernel creates labeled protected domains and associates
security attributes with active and passive entities exported at its interface [4]. This results in
a distinct separation of data into different security classification domains. In MYSEA, trusted
multilevel processes control the invocation of single-level applications that interact with the user
at his current session level. Various trusted processes are created by a daemon during system
initialization and are responsible for the proxying and mediating network access on behalf of
the application service, allowing it to communicate with the remote client.

For every application service hosted on MYSEA, a Secure Session Server (Parent) (SSS-P) is
created to respond to connection requests from clients. The SSS-P monitors the network and is
responsible for accepting and verifying that service requests from a TPE have a valid session.
The SSS-P spawns a proxy service (Secure Session Server (Child) (SSS-C)) for each client
connection request. This proxy sets up the actual untrusted Application Protocol Service (APS)
associated with the request, e.g. an untrusted Apache web service is an APS at the level of the
remote user’s session. All subsequent communication between the client and the APS is sent
and received via the proxy SSS-C, using one or more “MYSEA sockets”.

2.3.3 MYSEA Server Federation
The MYSEA server federation is a cluster of high assurance servers that provide the locus of
multilevel security policy enforcement and hosts various open source or commercial services.
During session establishment, the TPE forwards the user’s credentials to the MYSEA server
hosting the Trusted Path Server (TPS) process. The TPS maintains session data including the
user credentials, user’s clearance range and his current session level. The TPS process is respon-
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sible for validating connection requests from the TPE, and handles TPE requests for updating
session information (like login, change session level, run and logout), ensuring that account-
ability aspects of the security policy are enforced.

In the MYSEA server federation, a client can request an APS service hosted on a server that is
not hosting the TPS process. A Federated Services Daemon (FSD) on each MYSEA server han-
dles the internal communication required, validating the authenticity of the client and mediating
the accesses to the requested resources according to the security policies.

2.3.4 Dynamic Security Services
DSS is an IPSec configuration and administrative tool that assists in the creation of secure
tunnels between TPEs and the MYSEA server. Each DSS client resides on the TPE and connects
to the DSS server on the MYSEA server. The DSS admin tool allows a security administrator
to log onto the MYSEA server, set and manage the security policies associated with the IPSec
tunnels.

2.3.5 Single-level Networks
Users on a legacy network can only access applications on the MYSEA server at the classifi-
cation level associated with the label of the corresponding network device. Similarly, MYSEA
clients can also access applications on the legacy networks. This allows existing applications
on legacy networks to run unmodified and be accessible to SLAT client on the MLS LAN, with
the MYSEA TCB mediating all accesses.

2.4 MYSEA Security Policies
MYSEA supports both Mandatory Access Control (MAC) and Discretionary Access Control
(DAC) [1]. The system MAC policy is a confidentiality and integrity information flow control
policy, where the sensitivity labels form a lattice [13]. The confidentiality and integrity policies
are formally modeled by the BLP [14] and Biba [15] models, respectively. The high-assurance
OS of the MYSEA server mediates access to files and other labeled system resources. Network
connections on the MLS LAN are mediated by small, trusted processes on the MYSEA Server,
using information about client session level. For example, a client at SECRET cannot com-
municate with a client at UNCLASSIFIED, nor can a client at SECRET communicate using a
port in use by an untrusted APS acting on behalf of a remote client at UNCLASSIFIED. Thus,
access to network resources is impacted by checks performed by MYSEA processes, and access
to system resources is impacted by checks performed by the underlying high-assurance OS.
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For Discretionary Access Control (DAC), the MYSEA server allows users’ processes to modify
permissions associated with data objects such as files via runtime functions. The permissions
are registered with the server, and access decisions are made based on the end-users’ identities
bounded to the processes. This policy is less critical than MAC; hence its enforcement can be
allocated to the applications hosted on MYSEA server. Users can determine the access controls
of APS processes to access resources such as files. The access decisions are based on the
MYSEA user identities associated with the processes and permissions that are registered with
MYSEA server. This policy can be modified during runtime.

2.5 Current MYSEA Prototype
To benchmark MYSEA, we will analyze the existing MYSEA prototype system. Here, we high-
light some consequential differences between the current prototype system, and the MYSEA
design. Our benchmark tests will be performed on the current prototype.

2.5.1 Clients and TPEs
There are several designs capable of satisfying the MYSEA client component. The TPE ap-
plication and SLAT client could both run on a trusted separation kernel or hypervisor: each
single-level client runs in its own partition; the TPE application runs in its own partition. Alter-
natively, these components could be implemented using a small, handheld tactical device that
connects the stateless, thin client to the MLS LAN. The current prototype system follows this
latter strategy: the TPE mediates access to the network for a stateless client (currently a com-
modity PC that must be manually purged of state whenever a session ends). The prototype TPE
application is hosted on Linux, running on a hand-held device.

2.5.2 MYSEA Server Federation
Each MYSEA server is designed to run on an existing, commercial high-assurance system.
Previous MYSEA prototypes utilized BAE XTS-400 running STOP 6, an operating system with
CC EAL5+ certification [16]. The current prototype uses the next generation of this product:
STOP 7, which attained a CC EAL4+ certification [17].

2.5.3 Dynamic Security Services
The security requirements of MYSEA necessitate the establishment of a secure tunnel for net-
work communication between the TPE and MYSEA server. As STOP 7 lacks IPsec support,
another mechanism for establishing a secure tunnel between the client and server is needed.
A host-to-gateway IPSec tunnel is established between the TPE and a Server Gateway device.
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All network traffic to the MYSEA server is routed through the Server Gateway. Together, the
MYSEA server and Server Gateway form a single logical unit. The DSS client on both the TPE
and Server Gateway control this IPsec tunnel, modulating the tunnel’s characteristics based on
requests from a remote DSS admin tool. The DSS Client uses Racoon [18], the user-space
IPSec daemon, to provide the dynamic protection services.
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CHAPTER 3:
Objectives and High-Level Analysis

This chapter outlines the factors that are considered during the conceptual and planning phases
for benchmarking MYSEA as well as details about the selection of the tool used for performance
measurement.

We are interested in the overhead introduced by MYSEA’s design, such as those introduced
by processes performing Mandatory Access Control (MAC) checks associated with network
related calls. We attempt to measure components individually to determine which act as system
bottlenecks. By isolating and measuring the behavior of individual components, rather than
measuring the overall system or application performance, we are able to quantitatively assess
MYSEA’s design. Figure 3.1 outlines the process flow resulting from a client’s requests to
servers in MYSEA.

Figure 3.1: Process flow of a client making a service request to MYSEA

We describe the events that ensue next.
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1. Establish IPSec Tunnel
The DSS client on the TPE establishes an IPSec tunnel with the Server Gateway for the
MYSEA server, forming a trusted communications path between the client and MYSEA.
The DSS client on the TPE operates as a slave, following the DSS policy dictated by the
MYSEA server.
We can measure the overhead introduced as every network packet is inspected and an-
alyzed according to the loaded IPSec policy. If the communication is allowable by the
security policy, every network packet is encrypted at layer three of the TCP/IP protocol
stack and forwarded to the MYSEA Server via the secure communications channel.

2. Login and Start Secure Session
Once an IPSec tunnel has been established, the user logs on to MYSEA server using
the TPE and establishes a session at some security level. The TPS process on MYSEA is
responsible for identification and authentication (I&A) and must monitor for TPE connec-
tion requests. There is a TPS Parent process for the MYSEA federation, which manages
all Identification and Authentication (I&A) and login requests. The TPS Parent accepts
login requests from MYSEA clients and spawns a TPS Child to handle trusted path com-
munications for each client. When the TPS child receives data from the client, it reads
and processes the client’s command and returns the output before waiting to receive the
next command. Upon the successful I&A, the user at the MYSEA client negotiates a
session within his security range to access the services hosted on the MYSEA server.
The user can issue a “Run” or “Logout” command via the TPE. The latter terminates
the secure session and the TPS on MYSEA takes actions to update its information about
active sessions. Various interactions can take place during the login process, resulting in
overhead impacting the performance of MYSEA.

3. Service Request
Every service request made from the client to the APS goes through a series of proxy calls
before it is processed by the APS. The APS is the application process that responds to the
service request, and cannot directly communicate with the client. The APS is an untrusted
process; the SSS-C process mediates all network connections. Communications between
the APS and SSS-C are handled through a MYSEA socket (MSKT) allocated by the TPS
Child process. When the APS requires a socket call, the APS updates the MSKT database,
and signals the SSS-C. The SSS-C retrieves the request from the database, responds to the
client’s service request and inserts any retrieved data into the database. The APS is then
notified to retrieve the requested data from the database. Each TCP connection (for UDP,
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each packet) is checked using its source and destination, to see (in the context of active
sessions and outstanding network use) if the information flow is allowable according to
the MAC policy. When the APS and TPS processes are deployed on different physical
servers, there may be additional overhead due to the communication between MYSEA
servers, querying about the status of active sessions within the Federation. These proxy
design decisions may impact the performance of MYSEA.

We are interested in measuring the performance impact of the following three components: (1)
IPSec, (2) the MYSEA trusted proxy and (3) MYSEA’s federation of servers as a result
of the events described earlier. IPSec is related to the cost of IPSec encryption of all network
traffic between the TPE and server gateway. Measuring the MYSEA trusted proxy allows us
to analyze the cost of the client making a service request to MYSEA. We can measure the
overhead associated with the proxying of system calls for making any service request. Targeting
the MYSEA federation allows us to measure the cost of maintaining state among the servers.

The output of a benchmark must be reproducible, consistent, unbiased and realistic, based on
sound scientific methods and principles. The demands for a successful benchmark imply a need
for proper scientific procedure and a need for common agreement on the metrics [19]. There-
fore, the benchmarking methodology adopted in this thesis consists of a four stage process: (1)
determine the performance indicators; (2) select or develop tools for the benchmark; (3) config-
ure the test environment and; (4) execute benchmarks and analyze output. We describe stages
(1) and (2) in this chapter, stage (3) in Chapter 4 and stage (4) in Chapter 5.

3.1 Benchmarking Methodology
Benchmarking is the process of comparing business processes, services or products against one
another. It allows organizations to understand quantitatively the performance of the targets,
possibly for the purpose of improving their characteristics. Benchmarking of an IT system is
the process of running a specific program or workload on a specific machine or system and
measuring the resulting performance [20].

There are a wide variety of approaches to benchmarking because different approaches are neces-
sary to evaluate individual aspects of a system. For example, synthetic benchmarks load or stress
test some specific targeted components in the system; application benchmarks measure perfor-
mance of the system as it accomplishes some real-world task (like running a web server) under
some synthetic load. Benchmarks can be divided into the following categories [19] [21] [22]:
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• Application benchmarks, also known as macro benchmarks, take an application and
measure the time required to complete some tasks. They measure end-to-end perfor-
mance on a specific workload, assessing the performance experienced by end-users. For
example, the library generator ATLAS [23] uses application benchmarking to build linear
algebra libraries automatically tuned for the target processor. An evaluation of the Denali
Isolation kernel [24] made use of web server benchmarks to compare that platform with
BSD. The SPEC CPU benchmark suite measures several applications and combines the
results to rank overall performance.

• Micro-benchmarks measure the performance of individual operations in isolation. Bench-
marks intended to measure the performance of kernel primitives; system calls and the
network stack are commonly measured using micro-benchmarks. Ousterhout [25] de-
veloped benchmarks to isolate a number of kernel primitives providing measurements of
performance, independent of the machine’s platform. Micro-benchmarks were also used
to quantify the performance of the Denali Isolation Kernel’s primitive operations [24].
Network micro benchmarks measure the bandwidth, throughput and network latency ex-
perienced by the system, irrespective of application. Such benchmarks provide insight
into low-level network stack performance; in particular the latency associated with open-
ing a socket connection. A performance characterization of the Chelsio T110 10-Gigabit
Ethernet [26] adaptor makes use of micro-benchmarks to measure the single and multiple
connections of point-to-point latency and unidirectional throughput.

• Other benchmarks target the hardware used by the system, or the end-users of the sys-
tem. Benchmarking I/O performance provides a measurement of the cost of retrieving or
storing data using some particular hardware. It may measure sequential and streaming I/O
bandwidth for single processes, or random I/O latency for multiple processes (including
the time taken to create, write and read a number of files in a file system).
Subjecting real-world users to the system provides realistic performance measures. These
user tests produce results that are not always comparable across systems or versions, as
these tests cannot be easily repeated.

3.2 Performance Indicators
Different tools measure different performance indicators such as processor speed, memory la-
tency, network throughput, bandwidth and socket connection latency. Chapter 2 describes the
MYSEA process structure and their relationships. For a user to access an APS service hosted on
MYSEA, secure communication is established between the MYSEA client and MYSEA server
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using IPSec encryption. Every network packet is inspected and encrypted at the TPE before
it is transmitted to the server gateway. At the server gateway, network packets are decrypted
and forwarded to the MYSEA server for processing. Also, during the initial setup of APS com-
munication, the SSS-P listens on the network for requests and spawns a proxy to handle the
connection. The proxy acts as an intermediary between the APS and network to handle the
request. All traffic is inspected and proxied within MYSEA before the APS can receive it. In
addition, the TPS process that handles all I&A can be deployed on a different server from those
hosting MYSEA’s APS services. If a service request is made to an APS hosted on a server other
than the TPS, internal communication between the servers is required to assert the identity and
authenticity of the request. The following two KPIs are identified to measure the performance
of MYSEA. First, we can measure the TCP and UDP throughput transfer rates of the IPSec
encryption, MYSEA proxy and MYSEA federation. Second, we can also measure network
latency, the time taken for data to be transmitted from one point to another. In MYSEA, one
could measure the latency associated with opening and closing a network socket, reflecting the
initial costs of the setup for a connection between the client and server. We can also measure
the latency associated with the time taken for a request and response transaction to complete.

3.3 Benchmarking Tools for Use in MYSEA
There are various benchmarking tools available to measure the performance of systems that
provide networked services such as MYSEA. Examples include Apache Jmeter, LMbench and
Netperf. These benchmark tools automate the process of running performance tests for the
targeted system. These tools are intended to produce repeatable results, allowing for consistent
analysis of data to compare system performance.

Any benchmark tools used in the context of MYSEA must satisfy certain operational require-
ments. The current MYSEA prototype runs on the STOP operating system, a proprietary high
assurance operating system that is binary compatible with Linux. Any application service
hosted on MYSEA needs to be modified to run in a specific inetd mode, integrated with MY-
SEA processes. Therefore, source code for the tool selected must be available, and compatible
in the MYSEA environment.

The tool selected must be able to measure specific targets of the MYSEA system. We desire to
characterize each MYSEA component to analyze each feature of MYSEA’s design. In particu-
lar, an end-to-end application benchmark tool will not be able to produce such measurements,
as it characterizes the system only in terms of its performance with a specific application. For
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example, MYSEA currently supports a variety of application services (web services, VoIP, etc.),
and the benchmark tool selected must not characterize the performance of the application ser-
vice. Additionally, as MYSEA is an experimental system without actual users, we are unable to
develop workloads representative of its use in a realistic operating environment. The following
sections described the benchmark tools considered.

3.3.1 Jmeter
Apache Jmeter (TM) [27] is an open-source web server benchmark written in Java designed to
test functional behavior and measure performance. It can be used to test performance on static
and dynamic web resources, and perform load testing on the server. It is extensible and allows
the development of plugins that provides extensible testing capabilities.

Jmeter can be configured to benchmark the performance of the existing web services on MYSEA
at the client. This would eliminate the need to modify or adapt the tool to run on MYSEA. How-
ever, Jmeter is unable to produce results that measure isolated components of MYSEA, for ex-
ample the cost of proxying specific network calls. This tool would characterize the performance
costs of MYSEA’s TCB, combined with the performance characteristics of the untrusted, third
party web service, rather than characterizing the MYSEA system performance in isolation.

3.3.2 Netperf
Netperf [28] is an open-source benchmark tool written in C that is designed to characterize gen-
eral network performance experienced in client-server settings. The tool is split into two com-
ponents: netperf and netserver. The netperf tool is a client that requests tests to be performed,
while the netserver tool is a daemon process that resides on the system under test and responds
to requests. Netserver can run as either as a daemon, or as an inetd service. Netperf provides
tests for both unidirectional and bidirectional throughput and end-to-end latency. It can be used
to measure various aspects of networking performance with primary focus on unidirectional
data transfer and request/response performance using TCP or UDP socket interfaces.

3.3.3 LMbench
LMbench [22] [29] is a suite of micro-benchmarks written in C designed to measure latency
and bandwidth performance of system operations like data movement among the processor
and memory, network, file system and disk. LMbench was developed to identify and evaluate
system performance bottlenecks, and is portable across a wide set of Unix systems. LMbench is
open-source and binary compatible with Linux. It can also be used to measure specific targeted
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components and servers. However, LMbench lacks comprehensive documentation: its manual
pages lack detail, and the documentation does not describe how each specific test measures its
target. The lack of documentation hinders the porting of LMbench source code to work in the
MYSEA environment.

3.3.4 SPEC
Standard Performance Evaluation Corporation (SPEC) is a non-profit corporation that develops
and maintains a standardized set of relevant benchmarks for measuring the performance of IT
systems. Organizations can measure the performance of their products or services using the
SPEC benchmark suites. The results can be submitted to SPEC for validation, creating an
independently validated benchmark. This provides a fair comparison between similar products
and services. SPEC suites of benchmarks are written in C, Java or Fortran. However the source
code cannot be modified under its licensing rules to prevent the optimization of benchmarks to
skew the performance results positively, affecting fair comparison. This limits the portability
requirement of the benchmark tool.

19



THIS PAGE INTENTIONALLY LEFT BLANK

20



CHAPTER 4:
Methodology

This chapter describes the test environment, configurations and test plan used to benchmark
selected key performance indicators in MYSEA. The tests are designed to produce results from
which unbiased comparisons can be drawn. The benchmarks have been documented so that
they can be repeated with the same experimental setup.

The test environment consists of the physical setup, which includes the servers, network routers,
switches, and their interconnection. The software configuration used in the benchmark tests
consists of the server operating systems, client operating systems and the MYSEA components
and services.

We can configure different setups that allow for the measurement of targeted components (see
Chapter 3) of the MYSEA server. The setups are formed by combining permutations of the three
components, resulting in a total of eight different setups. We compare the eight different setups
against one another. The comparisons of different setups are referred to as Test Configuration
(TC)s where each TC measures the performance of the components and services in isolation.

We can execute a suite of benchmark tests on each TC, measuring the different aspects of perfor-
mance of the isolated components and services. Netperf client executes the following five tests:
(1) TCP_STREAM, (2) TCP_CRR, (3) TCP_CC, (4) TCP_RR and (5) UDP_STREAM.

We describe the tool selected and modifications that enable the benchmarking of MYSEA in
Section 4.1. We describe the test environment for the benchmarks in Section 4.2, the various
TCs in Section 4.3 and the suite of benchmark tests executed on MYSEA server in Section 4.4.
Section 4.5 describes the test plan for performing the benchmarks.

4.1 Tools and Instrumentation
Netperf version 2.5.0 is selected as the tool used to benchmark MYSEA. There are three reasons
behind the selection of netperf as the benchmark tool. First, netperf is open-source and, second,
it is written in the C programming language. The necessary modifications to the netperf source
code can be made to enable it to run on the current MYSEA prototype. Third, netperf has
comprehensive documentation that describes in detail how each test performs the benchmark
and what the test is measuring.
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To benchmark MYSEA, we deploy the netperf client on the TPE, and netserver on the MYSEA
server. The netperf client runs a suite of benchmark tests, making requests to the netserver
daemon. Netserver responds to these requests, measuring latency and throughput performance
and returns the results to netperf.

Netserver has two modes of operations: inetd and daemon. The inetd mode is used in TCs using
MYSEA, since all MYSEA processes are started by a trusted inetd process. The daemon mode
is used in TCs where MYSEA is not being measured, and it is not natural to start the process
via inetd.

In the inetd mode of operation, the MYSEA trusted inetd process SSS-P spawns the netserver
process when a request is received on the netserver service’s listening port. Netserver has been
modified to act as an untrusted MYSEA service and thus uses the MYSEA proxy service. This
allows us to measure the proxy service performance. Refer to Appendix A for more details on
the modifications to the netserver source code.

In the daemon mode of operation, one starts the netserver process manually before testing. The
netserver daemon process monitors the network, responding to requests from the netperf client.
This mode of operation does not require any modification to the netserver source code.

Appendix B provides details on how the netperf client and netserver server process are installed,
and how the benchmark tests are executed.
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4.2 Test Environment

Figure 4.1: The MYSEA benchmark test environment (network configuration and hardware).

Figure 4.1 shows the configuration and topology of the multilevel LAN used during bench-
marking. All network connections are one gigabit per sec (1Gbps) to reduce the possibility of
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Table 4.1: Configurations of TPE, server gateway and MYSEA server

Server Name Configuration

TPE
512MB RAM, VMWare ESXi v4.1.0

Fedora 7 linux kernel 2.6.23, IPSec Tools v0.6.6

Server Gateway
3GB RAM, VMWare ESXi v4.1.0

Fedora, IPSec Tools v0.6.6

MYSEA server
2GB RAM, VMWare ESXi v4.1.0

STOP v7.3.1

limited network bandwidth affecting the results of our benchmarks. The configurations of the
TPE, server gateway and MYSEA servers are provided in Table 4.1.

4.3 Test Configuration
Different TCs are designed to measure and compare the performance the MYSEA components
and services in isolation. Figure 4.2 compares all possible test configurations. The setups are
formed by the combination of three pairs of scenarios: “I”/“I-”, “M”/“M-” and “F”/“F-”. Each
scenario is described next.

“I” represents the scenario when IPSec is used to encrypt all network traffic between the TPE
and the MYSEA server gateway. “I-” represents the scenario when no network traffic is en-
crypted in the IPSec tunnel. This is achieved by flushing all IPSec rules from Racoon. There
are subtle differences between setups A5, B6, C7 and D8, although the TCs indicate that they
measure the performance of IPSec encryption. A5 and B6 measure the performance of IPSec
encryption with netserver spawned in inetd mode in a MYSEA environment where netserver is
accessed via MYSEA trusted proxy calls. C7 or D8 is deployed as a daemon on STOP server.

“M” represents the scenario when the netperf request undergoes a series of proxy calls in
MYSEA before reaching the netserver process, with netserver process spawned by the MYSEA
trusted inetd process. A secure session is first established between the TPE and the MYSEA
server before netperf client executes the suite of benchmark tests. “M-” represents the sce-
nario when the netserver process is running as a daemon on STOP with no MYSEA processes
running.
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“F” represents the scenario when the TPS process and the netserver process are deployed on
different physical servers in the MYSEA federation. This results in additional internal network
communication between the servers when netperf client executes the tests. “F-” represents the
scenario when the TPS process and our benchmark tool are deployed on the same physical
server.

For example, “A5” compares the two test configurations “I M F” and “I-M F”. This test config-
uration measures the overhead associated with IPSec (“I” vs “I-”), in the configuration where
MYSEA services are being used (“M”) on servers that require internal, federated requests (“F”).
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Figure 4.2: Figure showing the comparisons of different test configurations. Test cases considered in
this thesis are underlined
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4.4 Types of Tests
Netperf is capable of running different types of tests to measure different aspects of performance
of the targeted system. Five different tests are executed on the setups specified in Figure 4.2:
TCP_STREAM, TCP_CRR, TCP_CC and TCP_RR, UDP_STREAM. These five tests form
the suite of benchmark tests. [30] provides additional descriptions of the various tests. Each of
these will be discussed in their respective sections below.

We made use of the “OMNI” test in netperf to run the various tests. Previous netperf versions
included different source code to perform different tests. The “OMNI” test in netperf is a
consolidation of all available test functions into a single test. Different flags allow different
options to be selected to enable the execution of specific test functions. There are two types of
flags: global and test-specific. “Global” flags (see Table 4.3) provide options that apply to all
benchmark tests. Test-specific flags are described in their respective subsection.

Table 4.3: An explanation of the global options used in netperf

Flags Value Description
-H hostname This option sets the hostname or IP address of the targeted sys-

tem, where netserver daemon process is deployed. This option
allows us to measure the performance of the two different physi-
cal servers under the scenarios: “F” and “F-”.

-P 0 A value of “0” for this flag disables the display of the test banner.
The test banner was disabled in all of our experiments because we
executed the benchmark tests multiple times in succession and the
test banners are redundant and unnecessarily cluttered the output

-p port This option sets the port number for netperf client to use to con-
nect to the netserver daemon process.

-o filename This option allows the netperf client to read in a file containing
comma-separated header values. These headers correspond to the
different output values we want to record in our results. Exam-
ples of these headers include “THROUGHPUT”, “THROUGH-
PUT_UNITS”, “PROTOCOL” and “ELAPSED_TIME”.

4.4.1 TCP_STREAM
MYSEA clients access various services (i.e., web and mail) hosted on the MYSEA server us-
ing Transmission Control Protocol (TCP)-based protocols. The performance of MYSEA in
handling TCP packets is important to the experience of the client, in terms of the latency and
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throughput observed by the client. The TCP_STREAM test is designed to measure the per-
formance of the targeted component as it processes TCP data packets. The test provides the
throughput in bits per second and accounts for both the time required to push data across the
network and the time to process it on the targeted component. This test is unidirectional and the
time spent establishing the connection is not included in the throughput calculation. Table 4.4
shows the test-specific options used in netperf for the test: TCP_STREAM.

Table 4.4: TCP_STREAM test-specific options

Flags Value Description
-d send This option sets the direction of the test relative to the netperf

process. A value of “send” causes netperf to send data to the
netserver daemon process, resulting in a unidirectional test.

-T TCP This option sets “TCP” to be the protocol used for the test.

4.4.2 TCP_CRR
The TCP_CRR test combines TCP_CC and TCP_RR and measures the performance of the tar-
geted component in handling TCP connections. This test allows us to measure the performance
overhead in transactions per second of the targeted component in completing the entire TCP pro-
cess: establishing a connection via the three-way handshake, transferring one byte of request,
receiving one byte of response and tearing-down the connection. We can then obtain the latency
of one complete transaction in seconds by inverting the results. This test is designed to measure
the end-to-end latency experienced by a client when making a service request. Table 4.5 shows
the test-specific options used in netperf for the test: TCP_CRR.

Table 4.5: TCP_CRR test-specific options

Flags Value Description
-c This option explicitly instructs netperf to include connection es-

tablishment and teardown in its measurement.
-d send | recv This option sets the direction of the test relative to the netperf pro-

cess. A value of “send” causes netperf to send data to netserver
daemon process, while the value of “recv” causes netserver dae-
mon process to send data back to netperf. This results in a bi-
directional receive and response test.

-T TCP This option sets “TCP” to be the protocol used for the test.
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4.4.3 TCP_CC
The TCP_CC test isolates the speed at which connections can be opened and closed between
the target and client using the TCP protocol. A three-way handshake establishes a reliable
connection between the sender and receiver. The test is performed in a synchronous manner,
with no data transferred between the two entities. This test continuously opens and closes
connections between netperf and netserver, tracking the number of connections created. This
test provides the latency in transactions per second, a measurement of the performance of the
targeted component in establishing and tearing-down TCP connections.

The MYSEA trusted proxy introduces additional overhead for every new client connection. For
each new client connection, a proxy SSS-C process is spawned to handle the request. This test
measures the impact of spawning the additional process to handle the client request. Table 4.6
shows the test-specific options used in netperf for the test: TCP_CC. This test measures the
latency associated with the opening and closing of a transaction.

Table 4.6: TCP_CC test-specific options

Flags Value Description
-c This option explicitly instructs netperf to include connection es-

tablishment and teardown in its measurement.
-T TCP This option sets “TCP” to be the protocol used for the test.

4.4.4 TCP_RR
The TCP_RR test is a request and response test using the TCP protocol, where each request and
response packet is one byte in size. It is bi-directional and measures the number of complete
transactions per unit time that can be exchanged between two entities. This test is indepen-
dent of the time taken to establish the initial TCP socket connection and measures the latency
associated with the transfer of a byte of request and response request between the client and
server. Table 4.7 shows the test-specific options used in netperf for the test: TCP_RR. This test
is designed to measure the speed for uploading/downloading large files to MYSEA server (e.g.,
the ftp server), where the initial cost of setting up a connection is less significant.

4.4.5 UDP_STREAM
UDP is used as the underlying transport protocol for VoIP, and some other services provided
by MYSEA. The UDP_STREAM test is similar to the TCP_STREAM test except that UDP
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Table 4.7: TCP_RR test-specific options

Flags Value Description
-d send | recv This option sets the direction of the test relative to the netperf

process. A value of “send” causes netperf to send data to net-
server daemon process, whereas the value of “recv” causes net-
server daemon process to send data back to netperf. Used in com-
bination, this results in a bi-directional receive and response test.

-T TCP This option sets “TCP” to be the protocol used for the test.

is used as the mode of transport rather than TCP. This test provides the throughput in bits per
second and measures the performance of the targeted components as they process UDP data
packets. Table 4.8 shows the test-specific options used in netperf for the test: UDP_STREAM.

Table 4.8: UDP_STREAM test-specific options

Flags Value Description
-d send This option sets the direction of the test relative to the netperf

process. A value of “send” causes netperf to send data to netserver
daemon process, resulting in a unidirectional test.

-T UDP This option sets “UDP” to be the protocol used for the test.

4.5 Test Plan
Netperf client runs the suite of benchmark tests on the following six setups: “I M-F”, “I M-
F-”, “I-M-F”, “I-M-F-”, “I-M F” and “I-M F-” (See Figure 4.2). Each benchmark test was
executed sequentially for ten seconds (netperf default), and each test is repeated for one hundred
trial tests. We conducted experiments in the initial laboratory setup and repeated the trials with
different numbers of times: 10, 50, 100, 1000, 10000. One hundred (100) trials was selected
as it optimizes the amount of time required for the completion of the entire suite of benchmark
tests while achieving significant population samples with low variances. Before any execution
of benchmark tests, the test environment was restarted and prepared for the respective setup.
Steps included: recompilation of the netserver source code for the respective scenario (“I-M F”,
“I-M F-”, “I-M F”, “I-M F-”, “I M-F” and “I M-F-”), configuration of IPSec to setup/teardown
the secure tunnel, and deployment of netserver on the appropriate server. The results of the tests
were collected at the end of experiment.
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For the TCP_CC, TCP_CRR and TCP_RR benchmark tests, a two-minute delay wait period
between successive tests was introduced to address the following problem. During initial trial
experiments, abnormal results were obtained when these tests were executed. The latency of
certain trials was several times lower than the rest of the trials. After several experiments, it
was determined to be an issue associated with a TIME_WAIT reuse in the establishment of a
socket connection. The latency drops dramatically when the test reuses a connection that is
in the TIME_WAIT state. This results in a non-trivial delay in connection establishment. The
two-minute delay wait period forced the TIME_WAIT to expire.
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CHAPTER 5:
Testing and Analysis

This chapter discusses the execution of the benchmark tests and provides analysis of the results.
Section 5.1 discusses issues related to the collection of data and Section 5.2 provides a summary
of the results.

5.1 Overview
Chapter 3 and Chapter 4 discuss the methodology for designing a meaningful benchmark to
measure the performance of targeted components in MYSEA. The goal is to achieve soundness:
developing confidence that the results we derive from our measurements are well justified, with
a solid understanding of the strengths and limitations of the measurement process on which we
base our results [31]. We need to calibrate the test results by examining outliers and testing for
consistencies. This allows us to reliably reproduce analysis results by imposing a systematic
structure on the analysis process.

The “OMNI” test in netperf allows the specification of the type of output values to collect for
the test. These “selectors” determine the data to be reported. Table 5.1 highlights the important
selectors used. [30] provides the detailed documentation for the “selectors”.

Table 5.1: Netperf “OMNI” test selectors used during benchmarking MYSEA

Selector Name Description Examples
PROTOCOL Protocol used in the bench-

marks.
UDP, TCP

DIRECTION
Direction of the data flows
relative to the netperf process.

send | recv: bidirectional re-

quest and response

send: unidirectional request

THROUGHPUT Throughput for the test. 350.0234

THROUGHTPUT_UNITS Units for the throughput 103bits/s or 106bits/s
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5.2 Summary of Results
We compare each test scenario, relative to the scenario in which netserver is deployed on STOP
without the network being protected with IPSec, treating this as a “base case”. As expected,
we see that the base case shows the best performance, i.e., highest throughput and lowest la-
tency (see Figure 5.1, 5.2 and 5.3). For TCP stream performance, IPSec encryption results in
a 60% decrease in throughput, whereas MYSEA processes result in between 21–24% decrease
in throughput. For socket related performance, IPSec encryption results in between 24–30%
increase in latency, whereas MYSEA processes result in between 93–143% increase in latency.
These observations will be described more in their respective sections.

Our UDP results are inconclusive. For setups without IPSec encryption, the throughput values
obtained are lower than when IPSec encryption tunnel is used. This is counter-intuitive and
possibly the result of packet loss during testing. We refer the interested reader to Appendix G
for the status of our UDP test results. We leave further UDP testing as future work.

5.2.1 Overhead associated with IPSec
IPSec encryption reduces unidirectional TCP transfer throughput significantly. The perfor-
mance consequences of IPSec in an architecture similar to MYSEA, with server gateway and
IPSec encryption of traffic between TPE and server, is a decrease in unidirectional transfer
speeds, by about 60% (see Table 5.3). TCP connect latency increases an average of 24–30%,
reflected in the TCP_CC, TCP_RR and TCP_CRR tests. For the details of each test, see Ap-
pendix D.

The performance of IPSec has been well studied. Shue et al [32] report performance overhead
of 32–60% for Internet Key Exchange (IKE) based IPSec (Racoon uses IKE based IPSec) and
provides a comprehensive study on the performance overhead of IPSec. This is similar to our
results of 60% decrease in TCP throughput and socket related performance overhead range of
24–30%.

5.2.2 Overhead associated with the MYSEA Trusted Proxy
We observe a 21–25% decrease in throughput for unidirectional TCP traffic, relative to the base
case (see Table 5.4), when the trusted MYSEA proxy is used for network traffic (for details, see
Appendix E). We believe this decrease can be attributed to MYSEA’s proxy system call design,
in which the client and APS communicate via a proxy process (SSS-C) mediating all accesses,
inspecting and routing TCP network packets internally before reaching the APS.
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Table 5.2: Summary of the average overhead witnessed during TCP benchmarks (Figure 5.1, 5.2,
5.2)

TCP_STREAM Throughput
Scenario Mean (106bits/s) % decrease

MYSEA
I-M F 274.95 21.67%
I-M F- 270.57 24.67%

Base
I-M-F 351.00 -%
I-M-F- 359.16 -%

IPSec
I M-F 139.70 60.20%
I M-F- 144.51 59.76%

TCP_CC: Latency (ms/Trans)
Scenario Mean (Trans/s) Latency % increase

MYSEA
I-M F 529.54 1.888 143.30%
I-M F- 674.70 1.482 93.22%

Base
I-M F 1288.58 0.776 -%
I-M F- 1304.01 0.767 -%

IPSec
I-M F 993.89 1.006 29.64%
I-M F- 1020.16 0.980 27.77%

TCP_RR: Latency (ms/Trans)
Scenario Mean (Trans/s) Latency % increase

MYSEA
I-M F 2318.23 0.431 20.40%
I-M F- 2338.82 0.428 19.55%

Base
I-M F 2791.03 0.358 -%
I-M F- 2792.37 0.358 -%

IPSec
I-M F 2148.25 0.465 29.89%
I-M F- 2243.02 0.446 24.58%

The latency observed when the establishment of a new connection is involved is anywhere
between 90–150%, relative to the base case (see Table 5.4), whereas TCP_RR results in a
smaller increase in latency at about 20%, similar to the TCP_STREAM performance overhead.
TCP_RR is similar to TCP_STREAM, with the former being a bidirectional test. The TCP_RR
and TCP_STREAM results further conclude that MYSEA processes increase TCP performance
overhead by about 20% as a consequence of its proxy design to route all network packets via its
respective SSS-C process.

However, performance overhead increases significantly to 90–150% when the establishment of
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Table 5.3: Summary of IPSec results

TCP_STREAM Throughput
Scenario Mean (106bits/s) % decrease

F-
I-M-F- 359.16

60.00%
I M-F- 144.51

F
I-M-F 351.00

60.20%
I M-F 139.70

TCP_CC: Latency (ms/Trans)
Scenario Mean (Trans/s) Latency % increase

F-
I-M-F- 1304.01 0.767

27.77%
I M-F- 1020.16 0.980

F
I-M-F 1288.58 0.776

29.64%
I M-F 993.89 1.006

TCP_RR: Latency (ms/Trans)
Scenario Mean (Trans/s) Latency % increase

F-
I-M-F- 2792.37 0.358

24.58%
I M-F- 2243.02 0.446

F
I-M-F 2791.03 0.358

29.89%
I M-F 2148.25 0.465

TCP_CRR: Latency (ms/Trans)
Scenario Mean (Trans/s) Latency % increase

F-
I-M-F- 1183.12 0.845

30.89%
I M-F- 903.96 1.106

F
I-M-F 1152.27 0.868

29.61%
I M-F 889.10 1.125

a new connection is involved. We believe this can be attributed to the creation of a new SSS-C
process for every new TCP connection, resulting in significant performance overhead.

5.2.3 MYSEA Federation Overhead
When a MYSEA service (APS) and the TPS process are deployed on different servers, the
APS’s proxy causes a Federated request to fetch information about the client’s current level from
the MYSEA server hosting the TPS. In practice, these security checks occur per connection (for
UDP, per packet). In our testing, the netserver process acts as an APS, allowing us to interpret
the overhead associated with the intra-Federation communication.
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Table 5.4: Summary of MYSEA results

TCP_STREAM Throughput
Scenario Mean (106bits/s) % decrease

F-
I-M-F- 359.16

24.67%
I-M F- 270.57

F
I-M-F 351.00

21.67%
I M-F 274.95

TCP_CC: Latency (ms/Trans)
Scenario Mean (Trans/s) Latency % increase

F-
I-M-F- 1304.01 0.767

93.22%
I M-F- 674.70 1.482

F
I-M-F 1288.58 0.776

143.30%
I M-F 529.54 1.888

TCP_RR: Latency (ms/Trans)
Scenario Mean (Trans/s) Latency % increase

F-
I-M-F- 2792.37 0.358

19.55%
I M-F- 2338.82 0.428

F
I-M-F 2791.03 0.358

20.39%
I M-F 2318.23 0.431

TCP_CRR: Latency (ms/Trans)
Scenario Mean (Trans/s) Latency % increase

F-
I-M-F- 1183.12 0.845

105.44%
I M-F- 575.88 1.736

F
I-M-F 1152.27 0.868

146.54%
I M-F 467.30 2.140

For TCP services, we observe a greater latency when the APS and TPS are deployed on different
servers. From the results of the TCP_CC and TCP_CRR tests, setup “F” shows a significant
increase in latency of about 50% compared to setup “F-”. We believe this can be attributed
to the additional performance overhead associated with the MYSEA processes communicating
internally when the APS and TPS are on different servers.
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Figure 5.1: Boxplot showing the summary of TCP_STREAM performance for the six setups
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Figure 5.2: Boxplot showing the summary of TCP_CC socket performance for the six setups
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Figure 5.3: Boxplot showing the summary of TCP_RR request and response performance for the six
setups
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CHAPTER 6:
Conclusion

We analyzed the architecture of the MYSEA framework, and identified the major components
and services that create a high assurance MLS environment. Overall, we observe that the MY-
SEA trusted proxy architecture incurs significant overhead (impacting throughput and latency
for network connections). On average, the latency for new connections more than doubles
(about 118%) compared to MYSEA’s underlying platform. These costs are associated with
connection setup, i.e. starting a socket proxy on behalf of the user. Once a connection is es-
tablished, we observe an average throughput decrease of about 23% for unidirectional TCP
streams, associated with the cost of proxying a socket write() request. In a Federated setting,
the way state is communicated among servers alone is associated with an increase in latency of
about 50%.

6.1 Recommendations for Future Work
This thesis performed a high level analysis on the performance of MYSEA, focusing on the
comparison of the mean latency values and throughput. Further detailed mathematical analysis
can be performed on the data, finding other trends for the current set of data. The UDP results
are not conclusive, and future work can look into the possible causes and mitigations to study
the performance overhead of UDP packets. Future work can analyze other components and
services in MYSEA, such as the performance of the TPE and server gateway. Future work can
explore recommendations for improving the performance of the bottlenecks identified. Future
work can also measure the performance of MYSEA in setups “I M F-” and “I M F”, which are
closer comparisons to the operational environment that MYSEA is deployed in.
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APPENDIX A:
Netserver Modifications

This appendix describes the modifications to netserver to operate in the MYSEA environment.

1. Include MYSEA headers
In the header file: netlib.h, insert the following include statement.
#include "mysea_portability.h"

2. Insert flags for different compilation modes
Flags are used for the compilation of netserver in its two different modes of operation:
inetd and daemon. inetd mode is used in the MYSEA environment, under scenario “M",
while daemon mode is used in STOP, under scenario “M-". We need to compile the
netserver source code with support for MYSEA processes in scenario “M". Any modifi-
cations made to the source code to operate in MYSEA environment use flags inserted on
the command line to obtain the appropriate compilation.

Figure A.1: Insertion of MYSEA header with flags to compile for MYSEA support

3. Insert necessary code
Additional code and functions are added to netserver to integrate with MYSEA processes.
The following functions and headers are added to the source code:

Figure A.2: Addition of headers to source code in file: netserver.c
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Figure A.3: Addition of functions to source code in file: netserver.c, function: main
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Figure A.4: Modifications to source code in file: netserver.c, function: main
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Figure A.5: Modifications to source code in file: netserver.c, function: main
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APPENDIX B:
Installing and Running the Benchmark Tool

Two files are necessary for the installation and execution of Netperf benchmark tool: stop.v1.0.tar
and linux.v1.0.tar.

stop.v1.0.tar is used for the installation of netserver process on STOP server, while linux.v1.0.tar
is used for the installation of netperf client and execution of benchmark tests on the TPE. Both
are under configuration management within the MYSEA project.

B.1 Installing Netserver
1. Decompress stop.v1.0.tar

tar -xf stop.v1.0.tar

2. Select mode of installation
Inetd is used for the setup “M" while daemon is used for the setup “M-". The default
mode is inetd mode.

inetd mode: ./mysea_install_netserver.sh -m inetd

daemon mode: ./mysea_install_netserver.sh -m daemon

3. Optional
Specify the control port number for netserver to monitor on the network. The default is
12865.

./mysea_install_netserver.sh -cp 10000

Specify the help flag “h" for more options.

./mysea_install_netserver.sh -h
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B.2 Installing Netperf
1. Decompress linux.v1.0.tar

tar -xf linux.v1.0.tar

2. Optional
Specify the help flag “h" for more options.

./mysea_install_netperf.sh -h

B.3 Execute benchmark tests
1. Installing Netserver and Netperf

Refer to Section B.1 and Section B.2 for the installation details
2. Execute benchmark tests

Provide the necessary flags for the execution of different tests.

./mysea_run_netperf.sh

Flags
-cp|conPort Control port that netserver is monitoring

-dp|dataPort Data port used for transmission of data between Netserver

and Netperf

-H |host IP address or hostname of the targeted machine, where

netserver server process is residing

-n |numTests Number of times each test is executed

-t |test Name of the test to be executed

-tl|testlen The length of time in seconds each test is executed.

3. Collect Results
Netperf collects the results from the tests and places them in the current directory. The
default format of the output file is:

result-[test]-[testlen]-[numTests]-yyyymmddHHMMSS
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4. Optional
Specify the help flag “h" for more options.

./mysea_run_netperf.sh -h
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APPENDIX C:
Overview of Results

This appendix contains the boxplot summaries of all the testing. The boxplots compare the
results of the benchmark tests executed under all the scenarios.
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Figure C.1: Boxplots of TCP_STREAM Tests of all scenarios
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Figure C.2: Boxplots of UDP_STREAM Tests of all scenarios
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Figure C.3: Boxplots of TCP_CC Tests of all scenarios
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Figure C.4: Boxplots of TCP_CRR Tests of all scenarios
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Figure C.5: Boxplots of TCP_RR Tests of all scenarios
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APPENDIX D:
Results of IPSec Comparison

This appendix contains the results of the benchmark tests used for the analysis of the perfor-
mance overhead of IPSec.
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Figure D.1: Boxplots comparison of IPSec using TCP_STREAM Tests
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Figure D.2: Histogram comparison of IPSec using TCP_STREAM Tests
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Figure D.3: Scatterplot comparison of IPSec using TCP_STREAM Tests
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Figure D.4: Boxplots comparison of the performance of IPSec using UDP_STREAM Tests
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Figure D.5: Histogram comparison of the performance of IPSec using UDP_STREAM Tests
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Figure D.6: Scatterplot comparison of the performance of IPSec using UDP_STREAM Tests
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Figure D.7: Boxplots comparison of the performance of IPSec using TCP_CC Tests
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Figure D.8: Histogram comparison of the performance of IPSec using TCP_CC Tests
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Figure D.9: Scatterplot comparison of the performance of IPSec using TCP_CC Tests
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Figure D.10: Boxplots comparison of the performance of IPSec using TCP_CRR Tests
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Figure D.11: Histogram comparison of the performance of IPSec using TCP_CRR Tests
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Figure D.12: Scatterplot comparison of the performance of IPSec using TCP_CRR Tests
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Figure D.13: Boxplots comparison of the performance of IPSec using TCP_RR Tests
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Figure D.14: Histogram comparison of the performance of IPSec using TCP_RR Tests
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Figure D.15: Scatterplot comparison of the performance of IPSec using TCP_RR Tests
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Figure D.16: Boxplots comparison of IPSec using TCP_STREAM Tests
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Figure D.17: Histogram comparison of IPSec using TCP_STREAM Tests
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Figure D.18: Scatterplot comparison of IPSec using TCP_STREAM Tests
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Figure D.19: Boxplots comparison of the performance of IPSec using UDP_STREAM Tests
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Figure D.20: Histogram comparison of the performance of IPSec using UDP_STREAM Tests
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Figure D.21: Scatterplot comparison of the performance of IPSec using UDP_STREAM Tests
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Figure D.22: Boxplots comparison of the performance of IPSec using TCP_CC Tests
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Figure D.23: Histogram comparison of the performance of IPSec using TCP_CC Tests
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Figure D.24: Scatterplot comparison of the performance of IPSec using TCP_CC Tests
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Figure D.25: Boxplots comparison of the performance of IPSec using TCP_CRR Tests
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Figure D.26: Histogram comparison of the performance of IPSec using TCP_CRR Tests
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Figure D.27: Scatterplot comparison of the performance of IPSec using TCP_CRR Tests
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Figure D.28: Boxplots comparison of the performance of IPSec using TCP_RR Tests
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Figure D.29: Histogram comparison of the performance of IPSec using TCP_RR Tests
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Figure D.30: Scatterplot comparison of the performance of IPSec using TCP_RR Tests
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APPENDIX E:
Results of MYSEA Comparison

This appendix contains the results of the benchmark tests used for the analysis of the perfor-
mance overhead of the MYSEA proxy.
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Figure E.1: Boxplots comparison of MYSEA processes using TCP_STREAM Tests
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Figure E.2: Histogram comparison of MYSEA processes using TCP_STREAM Tests

91



Figure E.3: Scatterplot comparison of MYSEA processes using TCP_STREAM Tests
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Figure E.4: Boxplots comparison of the performance of IPSec using UDP_STREAM Tests
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Figure E.5: Histogram comparison of the performance of IPSec using UDP_STREAM Tests
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Figure E.6: Scatterplot comparison of the performance of IPSec using UDP_STREAM Tests
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Figure E.7: Boxplots comparison of the performance of IPSec using TCP_CC Tests
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Figure E.8: Histogram comparison of the performance of IPSec using TCP_CC Tests
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Figure E.9: Scatterplot comparison of the performance of IPSec using TCP_CC Tests
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Figure E.10: Boxplots comparison of the performance of IPSec using TCP_CRR Tests
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Figure E.11: Histogram comparison of the performance of IPSec using TCP_CRR Tests
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Figure E.12: Scatterplot comparison of the performance of IPSec using TCP_CRR Tests
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Figure E.13: Boxplots comparison of the performance of IPSec using TCP_RR Tests
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Figure E.14: Histogram comparison of the performance of IPSec using TCP_RR Tests
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Figure E.15: Scatterplot comparison of the performance of IPSec using TCP_RR Tests
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Figure E.16: Boxplots comparison of MYSEA processes using TCP_STREAM Tests
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Figure E.17: Histogram comparison of MYSEA processes using TCP_STREAM Tests
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Figure E.18: Scatterplot comparison of MYSEA processes using TCP_STREAM Tests
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Figure E.19: Boxplots comparison of the performance of IPSec using UDP_STREAM Tests
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Figure E.20: Histogram comparison of the performance of IPSec using UDP_STREAM Tests
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Figure E.21: Scatterplot comparison of the performance of IPSec using UDP_STREAM Tests
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Figure E.22: Boxplots comparison of the performance of IPSec using TCP_CC Tests
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Figure E.23: Histogram comparison of the performance of IPSec using TCP_CC Tests
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Figure E.24: Scatterplot comparison of the performance of IPSec using TCP_CC Tests
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Figure E.25: Boxplots comparison of the performance of IPSec using TCP_CRR Tests

114

1200 

+ 
---,-

i 

TCP CRR 

THROUGHPUT vs Scenarios 

1226.47 
. . . . . -....... . ......... . . .. ·11·3f:l6 . . . . . . .. . . . . . ...... . ........ . ........ . ........ . ........ . ........ , . ........ . ........ . ........ . . . . 

8 "" 
I 

109.Lll 

1000 ·····-------- ·-------- ·-------- ·-; ------ ·-------- ·-------- ·-------- ·-------- ·-------- ·-------- ·--------:- -------- ·-------- ·-------- ···· 

~ 800 
Vl 

V\" 
s:::: 
0 

·_;::; 
u 
Ill 
Vl 
s:::: 
Ill 

F 

600 

400 

Mean: 
1152.;27 

1-M-F 
Scenarios 

461.9.5 
r72.4l25 
'150.91 

J$:87~~5: 
T 

Mean: 
467.3P 

1-MF 



Figure E.26: Histogram comparison of the performance of IPSec using TCP_CRR Tests
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Figure E.27: Scatterplot comparison of the performance of IPSec using TCP_CRR Tests
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Figure E.28: Boxplots comparison of the performance of IPSec using TCP_RR Tests

117

u 
(I) 
Vl 

"ill 
s:: 
0 

·.;::; 
u 
Ill 
Vl 
s:: 
Ill 

F 

2800 

2600 

2400 

2200 

TCP RR 

THROUGHPUT vs Scenarios 

2663.43 

-,- 2423.91 

·· ·· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ··· ·· · ··! ·· ··· · ·· · ·· ··· · ·· · ········ ·· · · 

Mean: 
2791.03 

1-M-F 
Scenarios 

Mean: 
2318.23 

1-MF 

2209.62 



Figure E.29: Histogram comparison of the performance of IPSec using TCP_RR Tests
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Figure E.30: Scatterplot comparison of the performance of IPSec using TCP_RR Tests
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APPENDIX F:
Results of APS and TPS on different servers

This appendix contains the results of the benchmark tests used for the analysis of the perfor-
mance overhead of the MYSEA Federation.
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Figure F.1: Boxplots comparison of APS and TPS on different servers using TCP_STREAM Tests
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Figure F.2: Histograms of APS and TPS on different servers using TCP_STREAM Tests
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Figure F.3: Scatterplots of APS and TPS on different servers using TCP_STREAM Tests
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Figure F.4: Boxplots comparison of APS and TPS on different servers using UDP_STREAM Tests
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Figure F.5: Histograms of APS and TPS on different servers using UDP_STREAM Tests
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Figure F.6: Scatterplots comparison of APS and TPS on different servers using UDP_STREAM Tests
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Figure F.7: Boxplots comparison of APS and TPS on different servers using TCP_CC Tests
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Figure F.8: Histograms of APS and TPS on different servers using TCP_CC Tests
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Figure F.9: Scatterplots comparison of APS and TPS on different servers using TCP_CC Tests
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Figure F.10: Boxplots comparison of APS and TPS on different servers using TCP_CRR Tests
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Figure F.11: Histograms of APS and TPS on different servers using TCP_CRR Tests

132



Figure F.12: Scatterplots comparison of APS and TPS on different servers using TCP_CRR Tests
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Figure F.13: Boxplots comparison of APS and TPS on different servers using TCP_RR Tests
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Figure F.14: Histograms of APS and TPS on different servers using TCP_RR Tests

135



Figure F.15: Scatterplots comparison of APS and TPS on different servers using TCP_RR Tests
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APPENDIX G:
UDP Discussion

The results of UDP_STREAM test show abnormalities in its throughput. Figure G.1 shows the
boxplot summary of test results for UDP_STREAM test. The throughput mean values for the
scenarios when IPSec encryption tunnel is not deployed is smaller than when the IPSec encryp-
tion tunnel is deployed. This is counter intuitive as the presence of IPSec encryption tunnel
encrypting UDP packets should result in a additional overhead, and thus reduce its throughput.
Upon analysis of the raw test data for the scenario when NO IPSec encryption is used, we dis-
covered that the throughput is low because of the large disparity between the number of udp
packets sent by netperf and the number of udp packets received by netserver. Table G.1 shows
the number of udp packets sent and received when no IPSec encryption is used.

In addition, Table G.2 shows the test results for the scenario when IPSec encryption is used. We
see a greater than 50% decrease in the number of UDP packets received.

Table G.1: Examples of UDP_STREAM Test raw data for NO IPSec encryption

No. local send throughput
(103bits/s)

remove recv throughput
(103bits/s)

local packets sent remote packets recv

1 960418.23 998.37 75035 78
2 960815.57 25.6 75066 2
3 960764.19 153.6 75062 12
4 960760.61 25.6 75062 2
5 .....
6 .....

The following are the suggested steps for future work.

1. Use a network analyzer to capture the UDP packets Verify that the number of packets
captured on both sending and receiving party is accurately reported by netserver.

2. Analyze the function in source code: recv_omni in nettest_omni.c An error message was
reported in this function: “ YO! TIMESUP!”. Verify that the system calls that netserver
use for UDP related tests are valid in STOP OS.
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Table G.2: Examples of UDP_STREAM Test raw data when IPSec encryption is used

No. local send throughput
(103bits/s)

remove recv throughput
(103bits/s)

local packets sent remote packets recv

1 326865.51 141674.15 25538 11069
2 327094.31 155394.12 25556 12141
3 329015.93 149571.31 25706 11686
4 327903.53 149546.23 25619 11684
5 .....
6 .....
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Figure G.1: Boxplot showing the summary of test results for UDP_STREAM test
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